Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.229
Filtrar
1.
Curr Top Dev Biol ; 157: 83-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556460

RESUMO

For almost a century, developmental biologists have appreciated that the ability of the embryonic organizer to induce and pattern the body plan is intertwined with its differentiation into axial mesoderm. Despite this, we still have a relatively poor understanding of the contribution of axial mesoderm to induction and patterning of different body regions, and the manner in which axial mesoderm-derived information is interpreted in tissues of changing competence. Here, with a particular focus on the nervous system, we review the evidence that axial mesoderm notochord and prechordal mesoderm/mesendoderm act as organizers, discuss how their influence extends through the different axes of the developing organism, and describe how the ability of axial mesoderm to direct morphogenesis impacts on its role as a local organizer.


Assuntos
Encéfalo/embriologia , Face/embriologia , Camadas Germinativas , Mesoderma , Sistema Nervoso , Mesoderma/fisiologia , Morfogênese , Padronização Corporal
2.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982496

RESUMO

Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.


Assuntos
Folículo Piloso , Cabelo , Camundongos , Animais , Folículo Piloso/fisiologia , Pele , Mesoderma/fisiologia , Receptores de Proteínas Morfogenéticas Ósseas
3.
Cells ; 12(9)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37174713

RESUMO

Elongation of the posterior body axis is distinct from that of the anterior trunk and head. Early drivers of posterior elongation are the neural plate/tube and notochord, later followed by the presomitic mesoderm (PSM), together with the neural tube and notochord. In axolotl, posterior neural plate-derived PSM is pushed posteriorly by convergence and extension of the neural plate. The PSM does not go through the blastopore but turns anteriorly to join the gastrulated paraxial mesoderm. To gain a deeper understanding of the process of axial elongation, a detailed characterization of PSM morphogenesis, which precedes somite formation, and of other tissues (such as the epidermis, lateral plate mesoderm and endoderm) is needed. We investigated these issues with specific tissue labelling techniques (DiI injections and GFP+ tissue grafting) in combination with optical tissue clearing and 3D reconstructions. We defined a spatiotemporal order of PSM morphogenesis that is characterized by changes in collective cell behaviour. The PSM forms a cohesive tissue strand and largely retains this cohesiveness even after epidermis removal. We show that during embryogenesis, the PSM, as well as the lateral plate and endoderm move anteriorly, while the net movement of the axis is posterior.


Assuntos
Mesoderma , Placa Neural , Mesoderma/fisiologia , Morfogênese , Desenvolvimento Embrionário , Músculos
4.
Cell ; 186(12): 2610-2627.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209682

RESUMO

The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.


Assuntos
Gastrulação , Mesoderma , Animais , Coelhos , Camundongos , Gastrulação/genética , Mesoderma/fisiologia , Diferenciação Celular/fisiologia , Mamíferos/genética , Trofoblastos , Regulação da Expressão Gênica no Desenvolvimento
5.
Cell ; 186(3): 513-527.e19, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36657441

RESUMO

Axial development of mammals involves coordinated morphogenetic events, including axial elongation, somitogenesis, and neural tube formation. To gain insight into the signals controlling the dynamics of human axial morphogenesis, we generated axially elongating organoids by inducing anteroposterior symmetry breaking of spatially coupled epithelial cysts derived from human pluripotent stem cells. Each organoid was composed of a neural tube flanked by presomitic mesoderm sequentially segmented into somites. Periodic activation of the somite differentiation gene MESP2 coincided in space and time with anteriorly traveling segmentation clock waves in the presomitic mesoderm of the organoids, recapitulating critical aspects of somitogenesis. Timed perturbations demonstrated that FGF and WNT signaling play distinct roles in axial elongation and somitogenesis, and that FGF signaling gradients drive segmentation clock waves. By generating and perturbing organoids that robustly recapitulate the architecture of multiple axial tissues in human embryos, this work offers a means to dissect mechanisms underlying human embryogenesis.


Assuntos
Desenvolvimento Embrionário , Mesoderma , Somitos , Animais , Humanos , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Mesoderma/fisiologia , Morfogênese , Via de Sinalização Wnt , Organoides/metabolismo
6.
Nat Mater ; 22(1): 135-143, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577855

RESUMO

Tissue morphogenesis, homoeostasis and repair require cells to constantly monitor their three-dimensional microenvironment and adapt their behaviours in response to local biochemical and mechanical cues. Yet the mechanical parameters of the cellular microenvironment probed by cells in vivo remain unclear. Here, we report the mechanics of the cellular microenvironment that cells probe in vivo and in situ during zebrafish presomitic mesoderm differentiation. By quantifying both endogenous cell-generated strains and tissue mechanics, we show that individual cells probe the stiffness associated with deformations of the supracellular, foam-like tissue architecture. Stress relaxation leads to a perceived microenvironment stiffness that decreases over time, with cells probing the softest regime. We find that most mechanical parameters, including those probed by cells, vary along the anteroposterior axis as mesodermal progenitors differentiate. These findings expand our understanding of in vivo mechanosensation and might aid the design of advanced scaffolds for tissue engineering applications.


Assuntos
Mesoderma , Peixe-Zebra , Animais , Mesoderma/fisiologia , Diferenciação Celular/fisiologia , Morfogênese , Microambiente Celular
7.
Curr Top Dev Biol ; 146: 1-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152980

RESUMO

Evolution of gene regulatory networks (GRN) that orchestrate the highly coordinated course of development, is made possible by the network's robust nature for incorporating change without detrimental developmental outcome. It can be considered that the upstream network regulating early development, has immense influence over succeeding pathways thus may be less subjected to evolutionary modification. However, recent studies show incorporation of novel genes in such early developmental pathways such as the echinoderm pmar1 as evidence for drastic change occurring high in the GRN hierarchy. Here we discuss the mechanisms that underlie divergence of early developmental pathways utilizing promising insights from the evolution of echinoderm early mesoderm specification pathway of Pmar1-HesC double negative gate found solely in the euechinoid sea urchin lineage, as well as examples from other groups such as Spiralia and Drosophila.


Assuntos
Equinodermos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Equinodermos/genética , Redes Reguladoras de Genes , Mesoderma/fisiologia , Ouriços-do-Mar
8.
Cells Dev ; 168: 203748, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597846

RESUMO

In vertebrate embryos the presomitic mesoderm becomes progressively segmented into somites at the anterior end while extending along the anterior-posterior axis. A commonly adopted model to explain how this tissue elongates is that of posterior growth, driven in part by the addition of new cells from uncommitted progenitor populations in the tailbud. However, in zebrafish, much of somitogenesis is associated with an absence of overall volume increase, and posterior progenitors do not contribute new cells until the final stages of somitogenesis. Here, we perform a comprehensive 3D morphometric analysis of the paraxial mesoderm and reveal that extension is linked to a volumetric decrease and an increase in cell density. We also find that individual cells decrease in volume over successive somite stages. Live cell tracking confirms that much of this tissue deformation occurs within the presomitic mesoderm progenitor zone and is associated with non-directional rearrangement. Taken together, we propose a compaction-extension mechanism of tissue elongation that highlights the need to better understand the role tissue intrinsic and extrinsic forces in regulating morphogenesis.


Assuntos
Mesoderma , Peixe-Zebra , Animais , Desenvolvimento Embrionário , Mesoderma/fisiologia , Morfogênese , Somitos
9.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571821

RESUMO

We know little about the control of positional information (PI) during axolotl limb regeneration, which ensures that the limb regenerates exactly what was amputated, and the work reported here investigates this phenomenon. Retinoic acid administration changes the PI in a proximal direction so that a complete limb can be regenerated from a hand. Rather than identifying all the genes altered by RA treatment of the limb, we have eliminated many off-target effects by using retinoic acid receptor selective agonists. We firstly identify the receptor involved in this respecification process as RARα and secondly, identify the genes involved by RNA sequencing of the RARα-treated blastemal mesenchyme. We find 1177 upregulated genes and 1403 downregulated genes, which could be identified using the axolotl genome. These include several genes known to be involved in retinoic acid metabolism and in patterning. Since positional information is thought to be a property of the cell surface of blastemal cells when we examine our dataset with an emphasis on this aspect, we find the top canonical pathway is integrin signaling. In the extracellular matrix compartment, we find a MMP and several collagens are upregulated; several cell membrane genes and secretory factors are also upregulated. This provides data for future testing of the function of these candidates in the control of PI during limb regeneration.


Assuntos
Ambystoma mexicanum/metabolismo , Extremidades/fisiologia , Receptores do Ácido Retinoico/metabolismo , Regeneração/fisiologia , Animais , Matriz Extracelular/metabolismo , Mesoderma/metabolismo , Mesoderma/fisiologia , Transdução de Sinais/fisiologia , Tretinoína/metabolismo
10.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437124

RESUMO

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs). When FOSLCs were aggregated with PGCLCs derived from mouse embryonic stem cells, the PGCLCs entered meiosis to generate functional oocytes capable of fertilization and development to live offspring. Generating functional mouse oocytes in a reconstituted ovarian environment provides a method for in vitro oocyte production and follicle generation for a better understanding of mammalian reproduction.


Assuntos
Células-Tronco Embrionárias Murinas/fisiologia , Oócitos/fisiologia , Oogênese , Folículo Ovariano/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Desenvolvimento Embrionário , Feminino , Fertilização In Vitro , Masculino , Mesoderma/citologia , Mesoderma/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Embrionárias Murinas/citologia , Oócitos/citologia , Folículo Ovariano/embriologia , Folículo Ovariano/fisiologia , RNA-Seq , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Transcriptoma
11.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449835

RESUMO

The intrinsic genetic program of a cell is not sufficient to explain all of the cell's activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress-strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Citoesqueleto de Actina/genética , Actinas/genética , Actomiosina/genética , Animais , Forma Celular/genética , Citoesqueleto/genética , Gastrulação/genética , Mesoderma/fisiologia
12.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34338289

RESUMO

Transcriptional regulatory networks refine gene expression boundaries to define the dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that establish the boundary between the IM and neighboring vessel progenitors are poorly understood. Here, we delineate roles for the zinc-finger transcription factor Osr1 in kidney and vessel progenitor development. Zebrafish osr1 mutants display decreased IM formation and premature emergence of lateral vessel progenitors (LVPs). These phenotypes contrast with the increased IM and absent LVPs observed with loss of the bHLH transcription factor Hand2, and loss of hand2 partially suppresses osr1 mutant phenotypes. hand2 and osr1 are expressed together in the posterior mesoderm, but osr1 expression decreases dramatically prior to LVP emergence. Overexpressing osr1 during this timeframe inhibits LVP development while enhancing IM formation, and can rescue the osr1 mutant phenotype. Together, our data demonstrate that osr1 modulates the extent of IM formation and the temporal dynamics of LVP development, suggesting that a balance between levels of osr1 and hand2 expression is essential to demarcate the kidney and vessel progenitor territories.


Assuntos
Diferenciação Celular/fisiologia , Mesoderma/metabolismo , Mesoderma/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Rim/metabolismo , Rim/fisiologia , Organogênese/fisiologia , Fatores de Transcrição/metabolismo
13.
Sci Rep ; 11(1): 8242, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859268

RESUMO

We identified a human embryonic stem cell subline that fails to respond to the differentiation cues needed to obtain endoderm derivatives, differentiating instead into extra-embryonic mesoderm. RNA-sequencing analysis showed that the subline has hyperactivation of the WNT and BMP4 signalling. Modulation of these pathways with small molecules confirmed them as the cause of the differentiation impairment. While activation of WNT and BMP4 in control cells resulted in a loss of endoderm differentiation and induction of extra-embryonic mesoderm markers, inhibition of these pathways in the subline restored its ability to differentiate. Karyotyping and exome sequencing analysis did not identify any changes in the genome that could account for the pathway deregulation. These findings add to the increasing evidence that different responses of stem cell lines to differentiation protocols are based on genetic and epigenetic factors, inherent to the line or acquired during cell culture.


Assuntos
Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/fisiologia , Proteínas Wnt/genética , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Endoderma/citologia , Endoderma/fisiologia , Membranas Extraembrionárias/citologia , Membranas Extraembrionárias/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Transdução de Sinais/genética , Transcriptoma , Proteínas Wnt/metabolismo
14.
Development ; 148(18)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33674259

RESUMO

During Xenopus gastrulation, leading edge mesendoderm (LEM) advances animally as a wedge-shaped cell mass over the vegetally moving blastocoel roof (BCR). We show that close contact across the BCR-LEM interface correlates with attenuated net advance of the LEM, which is pulled forward by tip cells while the remaining LEM frequently separates from the BCR. Nevertheless, lamellipodia persist on the detached LEM surface. They attach to adjacent LEM cells and depend on PDGF-A, cell-surface fibronectin and cadherin. We argue that active cell motility on the LEM surface prevents adverse capillary effects in the liquid LEM tissue as it moves by being pulled. It counters tissue surface-tension effects with oriented cell movement and bulges the LEM surface out to keep it close to the curved BCR without attaching to it. Proximity to the BCR is necessary, in turn, for the maintenance and orientation of lamellipodia that permit mass cell movement with minimal substratum contact. Together with a similar process in epithelial invagination, vertical telescoping, the cell movement at the LEM surface defines a novel type of cell rearrangement: vertical shearing.


Assuntos
Movimento Celular/fisiologia , Gastrulação/fisiologia , Mesoderma/fisiologia , Xenopus laevis/fisiologia , Animais , Caderinas/metabolismo , Ação Capilar , Adesão Celular/fisiologia , Endoderma/metabolismo , Endoderma/fisiologia , Fibronectinas/metabolismo , Gástrula/metabolismo , Gástrula/fisiologia , Mesoderma/metabolismo , Pseudópodes/metabolismo , Pseudópodes/fisiologia , Xenopus laevis/metabolismo
15.
Elife ; 102021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661096

RESUMO

Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-ß signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinh1 (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence, and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs.


Cardiovascular diseases are the number one cause of death in the western world. Endothelial cells that line the blood vessels of the heart play a central role in the development of these diseases. In addition to helping transport blood, these cells support the normal running of the heart, and help it to grow and regenerate. Over time as the body ages and experiences stress, endothelial cells start to deteriorate. This can cause the cells to undergo senescence and stop dividing, and lay down scar-like tissue via a process called fibrosis. As a result, the blood vessels start to stiffen and become less susceptible to repair. Ageing, obesity, high blood pressure, and inactivity all increase the risk of developing cardiovascular diseases, whereas regular exercise has a protective effect. But it was unclear how these different factors affect endothelial cells. To investigate this, Hemanthakumar et al. compared the gene activity of different sets of mice: old vs young, obese vs lean, heart problems vs healthy, and fit vs sedentary. All these risk factors ­ age, weight, inactivity and heart defects ­ caused the mice's endothelial cells to activate mechanisms that lead to stress, senescence and fibrosis. Whereas exercise training had the opposite effect, and turned off the same genes and pathways. All of the at-risk groups also had high levels of a gene called SerpinH1, which helps produce tissue fiber and collagen. Experiments increasing the levels of SerpinH1 in human endothelial cells grown in the laboratory recreated the effects seen in mice, and switched on markers of stress, senescence and fibrosis. According to the World Health Organization, cardiovascular disease now accounts for 10% of the disease burden worldwide. Revealing the affects it has on gene activity could help identify new targets for drug development, such as SerpinH1. Understanding the molecular effects of exercise on blood vessels could also aid in the design of treatments that mimic exercise. This could help people who are unable to follow training programs to reduce their risk of cardiovascular disease.


Assuntos
Senescência Celular , Células Endoteliais/fisiologia , Proteínas de Choque Térmico HSP47/genética , Coração/fisiopatologia , Mesoderma/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP47/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Risco
16.
Dev Cell ; 56(6): 826-841.e4, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33705692

RESUMO

We describe a cellular contractile mechanism employed by fibroblasts and mesenchymal cancer cells to migrate in 3D collagen gels. During 3D spreading, fibroblasts strongly deform the matrix. They protrude, polarize, and initiate migration in the direction of highest extracellular matrix (ECM) deformation (prestrain). This prestrain is maintained through anterior cellular contractions behind the leading edge prior to protrusion, coordinating a distinct 3D migration cycle that varies between cell types. Myosin IIA is required for strain polarization, generating anterior contractions, and maintaining prestrain for efficient directional cell migration. Local matrix severing disrupts the matrix prestrain, suppressing directional protrusion. We show that epithelial cancer and endothelial cells rarely demonstrate the sustained prestrain or anterior contractions. We propose that mesenchymal cells sense ECM stiffness in 3D and generate their own matrix prestrain. This requires myosin IIA to generate polarized periodic anterior contractions for maintaining a 3D migration cycle.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Mesoderma/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Estresse Mecânico , Neoplasias da Mama/metabolismo , Adesão Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Humanos , Mesoderma/citologia
17.
Dev Biol ; 473: 119-129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607112

RESUMO

Retinoic acid (RA) signaling is required to restrict heart size through limiting the posterior boundary of the vertebrate cardiac progenitor field within the anterior lateral plate mesoderm (ALPM). However, we still do not fully understand how different cardiac progenitor populations that contribute to the developing heart, including earlier-differentiating first heart field (FHF), later-differentiating second heart field (SHF), and neural crest-derived progenitors, are each affected in RA-deficient embryos. Here, we quantified the number of cardiac progenitors and differentiating cardiomyocytes (CMs) in RA-deficient zebrafish embryos. While Nkx2.5+ cells were increased overall in the nascent hearts of RA-deficient embryos, unexpectedly, we found that the major effect within this population was a significant expansion in the number of differentiating FHF CMs. In contrast to the expansion of the FHF, there was a progressive decrease in SHF progenitors at the arterial pole as the heart tube elongated. Temporal differentiation assays and immunostaining in RA-deficient embryos showed that the outflow tracts (OFTs) of the hearts were significantly smaller, containing fewer differentiated SHF-derived ventricular CMs and a complete absence of SHF-derived smooth muscle at later stages. At the venous pole of the heart, pacemaker cells of the sinoatrial node also failed to differentiate in RA-deficient embryos. Interestingly, genetic lineage tracing showed that the number of neural-crest derived CMs was not altered within the enlarged hearts of RA-deficient zebrafish embryos. Altogether, our data show that the enlarged hearts in RA-deficient zebrafish embryos are comprised of an expansion in earlier differentiating FHF-derived CMs coupled with a progressive depletion of the SHF, suggesting RA signaling determines the relative ratios of earlier- and later-differentiation cardiac progenitors within an expanded cardiac progenitor pool.


Assuntos
Coração/embriologia , Mesoderma/metabolismo , Tretinoína/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Coração/fisiologia , Ventrículos do Coração/metabolismo , Mesoderma/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Organogênese/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Tretinoína/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
18.
Nat Commun ; 12(1): 1157, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608545

RESUMO

Somites arising from paraxial mesoderm are a hallmark of the segmented vertebrate body plan. They form sequentially during axis extension and generate musculoskeletal cell lineages. How paraxial mesoderm becomes regionalised along the axis and how this correlates with dynamic changes of chromatin accessibility and the transcriptome remains unknown. Here, we report a spatiotemporal series of ATAC-seq and RNA-seq along the chick embryonic axis. Footprint analysis shows differential coverage of binding sites for several key transcription factors, including CDX2, LEF1 and members of HOX clusters. Associating accessible chromatin with nearby expressed genes identifies cis-regulatory elements (CRE) for TCF15 and MEOX1. We determine their spatiotemporal activity and evolutionary conservation in Xenopus and human. Epigenome silencing of endogenous CREs disrupts TCF15 and MEOX1 gene expression and recapitulates phenotypic abnormalities of anterior-posterior axis extension. Our integrated approach allows dissection of paraxial mesoderm regulatory circuits in vivo and has implications for investigating gene regulatory networks.


Assuntos
Embrião de Galinha/fisiologia , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Sequências Reguladoras de Ácido Nucleico/fisiologia , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Linhagem da Célula , Feminino , Gastrulação/genética , Gastrulação/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Somitos/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis
19.
PLoS Biol ; 19(1): e3001060, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406067

RESUMO

Collective migration of cohesive tissues is a fundamental process in morphogenesis and is particularly well illustrated during gastrulation by the rapid and massive internalization of the mesoderm, which contrasts with the much more modest movements of the ectoderm. In the Xenopus embryo, the differences in morphogenetic capabilities of ectoderm and mesoderm can be connected to the intrinsic motility of individual cells, very low for ectoderm, high for mesoderm. Surprisingly, we find that these seemingly deep differences can be accounted for simply by differences in Rho-kinases (Rock)-dependent actomyosin contractility. We show that Rock inhibition is sufficient to rapidly unleash motility in the ectoderm and confer it with mesoderm-like properties. In the mesoderm, this motility is dependent on two negative regulators of RhoA, the small GTPase Rnd1 and the RhoGAP Shirin/Dlc2/ArhGAP37. Both are absolutely essential for gastrulation. At the cellular and tissue level, the two regulators show overlapping yet distinct functions. They both contribute to decrease cortical tension and confer motility, but Shirin tends to increase tissue fluidity and stimulate dispersion, while Rnd1 tends to favor more compact collective migration. Thus, each is able to contribute to a specific property of the migratory behavior of the mesoderm. We propose that the "ectoderm to mesoderm transition" is a prototypic case of collective migration driven by a down-regulation of cellular tension, without the need for the complex changes traditionally associated with the epithelial-to-mesenchymal transition.


Assuntos
Actomiosina/metabolismo , Ectoderma/fisiologia , Mesoderma/fisiologia , Animais , Movimento Celular/genética , Regulação para Baixo/fisiologia , Ectoderma/embriologia , Embrião não Mamífero , Transição Epitelial-Mesenquimal/fisiologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Gastrulação/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Morfogênese/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Distribuição Tecidual/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
20.
Dev Biol ; 470: 74-83, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159936

RESUMO

We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.


Assuntos
Gastrulação , Proteínas de Xenopus/fisiologia , Xenopus laevis/embriologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Movimento Celular , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/patologia , Indução Embrionária , Endoderma/citologia , Endoderma/embriologia , Endoderma/fisiologia , Fibronectinas/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/fisiologia , Morfolinos , Crista Neural/citologia , Crista Neural/embriologia , Proteólise , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...